5D UED: Flat and Flavorless

Johannes Heinonen

Enrico Fermi Institute - University of Chicago

Based on arXiv:1007.0025 [JHEP01(2011)089] with C. Csáki (Cornell), J. Hubisz (Syracuse), S. C. Park (IPMU) and J. Shu (IPMU)

February 10, 2011

Fermilab Theory Seminar

Outline

- Motivation
 - Anarchic flavor in a warped extra dimension (RS-GIM)
- Flat extra dimension with KK-parity
 - How to add fermion masses ("split UED")
 - → Light fermionic modes
 - → (Pseudo)Goldstones
- Bounds from flavor physics
 - No analog of RS-GIM
 - How to (not) circumvent these bounds ⇒ RS
- Summary

Hierarchy Problem vs. Flavor Physics

• "Tension" between EWSB & flavor

- \Rightarrow We need new physics $\lesssim 1$ TeV to ensure that Higgs is light, but it must not violate flavor.
 - Does a model naturally respect flavor?
- ⇒ In general: No. In some cases: Yes.

Reminder: Flavor in RS

Randall-Sundrum

warped metric

$$ds^2 = \left(\frac{R}{z}\right)^2 (dx^2 - dz^2)$$

- Higgs on the IR brane.
- SM fields in the bulk.
- Hiss mass is suppressed by $\frac{R'}{R} \sim 10^{16}$

Flavor in RS: The fermion wave functions

- What about flavor in this model?
- Give fermions a bulk mass

$$S \supset \int d^5x \left(\frac{R}{z}\right)^4 \frac{c^i}{z} \bar{\Psi}_i \Psi_i \qquad (\text{for } Q, u, d)$$

⇒ KK-decomposition

$$\Psi = \begin{pmatrix} \chi \\ \bar{\psi} \end{pmatrix} = \sum_{n} \begin{pmatrix} g_{n}(y)\chi_{n}(x) \\ f_{n}(y)\bar{\psi}_{n}(x) \end{pmatrix} \leftarrow \text{lefthanded} \\ \leftarrow \text{righthanded}$$

equations of motion

$$g'_{n} - \frac{2-c}{z}g_{n} - m_{n}f_{n} = 0$$

 $f'_{n} - \frac{2+c}{z}f_{n} + m_{n}g_{n} = 0$

Flavor in RS: The fermion wave functions

Zero mode solutions

$$g_0 \sim \left(\frac{z}{R}\right)^{2-c}$$
 and $f_0 \sim \left(\frac{z}{R}\right)^{2+c}$

Obtain a chiral spectrum by imposing boundary conditions

$$[++]:$$
 $f_0 \equiv 0$ @ $(z=R,R') \Rightarrow g_0 - mode$
 $[--]:$ $g_0 \equiv 0$ @ $(z=R,R') \Rightarrow f_0 - mode$

• Normalization, $\int dz \left(\frac{R}{z}\right)^4 g_0(z)^2 = 1$, tells us where the mode is localized

$$g_0 \left\{ \begin{array}{ll} {\rm UV} & {\rm for} \ c > 1/2 \\ {\rm IR} & {\rm for} \ c < 1/2 \end{array} \right. \quad , f_0 \left\{ \begin{array}{ll} {\rm UV} & {\rm for} \ c < -1/2 \\ {\rm IR} & {\rm for} \ c > -1/2 \end{array} \right.$$

Flavor in RS: (Anarchic) Yukawa couplings

Normalized zero mode solutions

$$g_0 \sim z^{2-c} f(c)$$
 and $f_0 \sim z^{2+c} f(-c)$

with
$$f(c) = \sqrt{\frac{1 - 2c}{1 - (R'/R)^{2c-1}}}$$

- f(c) strongly hierarchical for SM fermions.
- Yukawa couplings: after EWSB

$$\mathcal{L}_{Y} = -\frac{v}{\sqrt{2}} \frac{R^{4}}{R'^{3}} \left[\bar{\Psi}_{q} \tilde{Y}_{u} \Psi_{u} + \bar{\Psi}_{q} \tilde{Y}_{d} \Psi_{d} + h.c. \right] \Big|_{z=R'}$$

 \tilde{Y}_u, \tilde{Y}_d are both $\mathcal{O}(1)$, anarchic flavor matrices.

Flavor in RS: The SM masses

⇒ Mass matrices are given by

$$m_u = rac{v}{\sqrt{2}} f_q \tilde{Y}_u f_u \ m_d = rac{v}{\sqrt{2}} f_q \tilde{Y}_d f_d$$
 with $f_c = ext{diag}[\{f(c_i\}]$

Now usual SM prescription applies

$$m^{SM} = U_L m U_R^\dagger$$
 and $V_{CKM} = U_{Lu}^\dagger U_{Ld}$ $\Rightarrow \left(m_{u,d}^{SM}\right)_{ii} \sim rac{v}{\sqrt{2}} Y_* f_{q_i} f_{u_i,d_i}$

⇒ We get mass hierarchy, but what about new FCNC contributions?

Flavor in RS: Hierarchy of f_i 's

- First let us check of what order the f_i 's are.
- For left-handed fields: f_i 's are determined from V_{CKM}

$$|U_{ij}| \sim rac{f_i}{f_j} \qquad \Rightarrow \qquad |(V_{CKM})_{ij}| = |(U_{Lu}^\dagger U_{Ld})_{ij}| \sim rac{f_{q_i}}{f_{q_j}} \qquad i \leq j.$$
 $V_{CKM} \sim \left(egin{array}{ccc} 1 - rac{\lambda^2}{2} & \lambda & \lambda^3 \ \lambda & 1 - rac{\lambda^2}{2} & \lambda^2 \ \lambda^3 & \lambda^2 & 1 - rac{\lambda^2}{2} \end{array}
ight)$

$$rac{f_{q_2}}{f_{q_2}}\sim \lambda^2, \quad rac{f_{q_1}}{f_{q_2}}\sim \lambda^3 \qquad ext{with } \lambda\sim \sin heta_c\sim 0.2$$

Flavor in RS: Hierarchy of f_i 's

• Right-handed f_{u_i,d_i} 's fixed by fermion masses hierarchy:

$$\left(m_u^{SM}
ight)_{ii} \sim rac{v}{\sqrt{2}} Y_* f_{q_i} f_{u_i} \ \left(m_d^{SM}
ight)_{ii} \sim rac{v}{\sqrt{2}} Y_* f_{q_i} f_{d_i}$$

$$\begin{array}{lll} \frac{f_{u_1}}{f_{u_3}} & \sim \frac{m_u}{m_t} \frac{1}{\lambda^3}, & \frac{f_{u_2}}{f_{u_3}} & \sim \frac{m_c}{m_t} \frac{1}{\lambda^2} \\ \frac{f_{d_1}}{f_{u_3}} & \sim \frac{m_d}{m_t} \frac{1}{\lambda^3}, & \frac{f_{d_2}}{f_{u_3}} & \sim \frac{m_s}{m_t} \frac{1}{\lambda^2}, & \frac{f_{d_3}}{f_{u_3}} & \sim \frac{m_b}{m_t} \end{array}$$

Flavor in RS: New Contributions to FCNC

• Strongest bound: FCNC due to KK-gluon exchange:

Plug in the wave function: In original basis = diagonal

$$g_{x} pprox g_{s*} \Big[\underbrace{-\frac{1}{\log R'/R}}_{ ext{universal}} + \underbrace{f_{x}^{2} \gamma(c_{x})}_{ ext{non-universal: } \gamma \sim 1} \Big]$$

- \Rightarrow Universal part does not contribute: $U^{\dagger} \mathbb{1} U = \mathbb{1}$.
- ⇒ Non-universal part: New source of FCNCs.

Flavor in RS: RS-GIM

- How big is the size of flavor violation?
- Rotate with $U \sim f_i/f_j$ \Rightarrow Off-diagonal KK-gluon couplings

$$g^{ij} \sim g_{s*} f_i f_j$$
 (for q, u, d)

RS - GIM $\hat{=} g^{ij}$ is automatically suppressed

- for L: by ratios of CKM-elements.
- for R: by mass hierarchy.

(For getting numbers, I will assume $f_3 \sim 1$.)

Flavor in RS: How strong is RS-GIM?

• How strong is this suppression for $\Delta F = 2$ operators?

Effective Hamiltonian

$$\mathcal{H} = C^{1}(\bar{q}_{L}^{i}q_{L}^{j})(\bar{q}_{L}^{k}q_{L}^{l}) + C^{4}(\bar{q}_{R}^{i}q_{L}^{k})(\bar{q}_{L}^{l}q_{R}^{j}) + C^{5}(\bar{q}_{R}^{i}q_{L}^{l})(\bar{q}_{L}^{k}q_{R}^{j})$$

- Strongest bound comes from the Kaon system: $|C_{\kappa}^4|$ suppressed by $10^4 10^5$ TeV.
- \Rightarrow in RS:

$$C_K^4 \sim \frac{g_{s*}^2}{M^2} f_{q1} f_{q2} f_{d1} f_{d2} \sim \frac{g_{s*}^2}{M^2} \frac{m_d m_s}{m_t^2}$$
$$\Rightarrow \boxed{M \sim 20 \text{ TeV}}$$

⇒ Can we implement this in flat space? Does a similar mechanism exist in UED?

Why look at a flat extra dimension?

- UED models do NOT address the hierarchy problem!
- Nevertheless, interesting for model building and LHC phenomenology
 - \rightarrow KK-parity provides a dark matter candidate
 - ightarrow UED can fake SUSY-spectra (1st KK-level pprox SUSY spectrum)
 - ightarrow UED can fake gauge mediation signals (photons + missing E_T)
 - $\rightarrow \dots$
- \Rightarrow UED is an interesting "straw man" to compare to SUSY.

How well could we distinguish these two theories at the LHC?

What do we want to do?

Goal: A model of UED with KK-parity with anarchic Yukawas mass hierarchies from localization (like RS-GIM)

UED with KK-parity

UED

- Flat metric $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} dy^2$
- All SM fields in the bulk.
- SM fields are flat.
- Add KK-parity: $y \rightarrow -y$ + Improves EWPC.
 - + DM candidate.
- Usually, flavor put in by hand.
- \rightarrow Is there a UED-GIM?

UED with KK-parity: Fermions

• Let's add a bulk mass for the fermions like we did in RS:

$$S = \int d^4x \int dy \left[\frac{i}{2} (\bar{\Psi} \Gamma^M \overleftrightarrow{\partial}_M \Psi) - m \bar{\Psi} \Psi \right]$$

The wave functions obey

$$\frac{dg_n}{dy} + mg_n - m_n f_n = 0$$

$$\frac{df_n}{dy} - mf_n - m_n g_n = 0$$

- KK-parity: $y \rightarrow -y$
- \Rightarrow g_n and f_n have opposite KK-parity.
- \Rightarrow The mass term violates KK-parity, unless $m \rightarrow -m$

UED with KK-parity: Fermion zero mode

Zero mode solutions

$$g_0 \sim e^{-my}$$
 $f_0 \sim e^{+my}$

 $(\mathsf{BC} \to \mathsf{Chiral\ spectrum}) \\ \Rightarrow \mathsf{not\ KK-Parity\ invariant}.$

UED with KK-parity

To maintain KK-parity while allowing bulk masses

$$m = m(y) = \begin{cases} \mu & , y < 0 \\ -\mu & , y > 0 \end{cases}$$

• For $y \neq 0$, we still have

$$g'_n + m(y) g_n - m_n f_n = 0$$

 $f'_n - m(y) f_n - m_n g_n = 0$

 \Rightarrow Invariant under KK-parity: $m(y) \rightarrow -m(y)$

UED with KK-parity: Fermion zero mode

Different localization, depending on sign of μ .

 \Rightarrow Could give mass hierarchy due to small overlap.

Fermion spectrum: For a LH zero mode

• Let's examine the complete fermion spectrum: Lefthanded zero mode g₀.

Fermion spectrum: For a LH zero mode

Let's examine the complete fermion spectrum:
 Lefthanded zero mode g₀.

Fermion spectrum: Origin of the extra light mode

Origin: LH and RH modes have opposite behavior

For LH zero mode

$$g'_n + mg_n - m_n f_n = 0$$

$$f'_n - mf_n - m_n g_n = 0$$

with BC:
$$f_n(\pm L/2) = 0$$

BC: $f_0 \neq 0$ \Rightarrow gets heavy

Fermion spectrum: Origin of the extra light mode

Origin: LH and RH modes have opposite behavior

For LH zero mode

$$g'_n + mg_n - m_n f_n = 0$$

$$f'_n - mf_n - m_n g_n = 0$$

with BC:
$$f_n(\pm L/2) = 0$$

BC: $f_0 \neq 0$ \Rightarrow gets heavy

BC: $f_0 \approx 0 \Rightarrow f_0$ remains light

Fermion spectrum: Consequences

- What does this mean for our model?
 - Need to choose $\mu_L < 0$ to localize LH in the middel

Fermion spectrum: Consequences

- What does this mean for our model?
 - Need to choose $\mu_L < 0$ to localize LH in the middel
 - For same reason we need RH in middle $(\mu_R > 0)$

Fermion spectrum: Consequences

- What does this mean for our model?
 - Need to choose $\mu_L < 0$ to localize LH in the middel
 - For same reason we need RH in middle $(\mu_R > 0)$
 - ⇒ Need all SM localized at y = 0 to avoid light modes.

⇒ No small overlap: How will we get the hierarchy now?

Localizing the Higgs

 To obtain hierarchy:
 Need to exponentially localize the Higgs at the boundaries (or put it directly on the boundary)

Localizing the Higgs

- Add bulk potential $V = m^2 |H|^2$
- Add boundary potentials $V \propto \lambda (|H|^2 v^2)^2$

⇒ Gives hierarchy:

$$\mathcal{L}_{Y} \approx -\frac{v}{\sqrt{2}} \left[\bar{\Psi}_{q} \tilde{Y}_{u} \Psi_{u} + \bar{\Psi}_{q} \tilde{Y}_{d} \Psi_{d} + h.c. \right] \Big|_{y=\pm \frac{L}{2}}$$

• BUT, also gives very light, KK-odd mode.

Localizing the Higgs: Two site model

- Where are these (Pseudo)Goldstones from?
- ullet For simplicity, consider a 2 site model: $H o H_1 \ \& \ H_2$
- Symmetry structure of 2 site model:

Localizing the Higgs: Two site model

- Where are these (Pseudo)Goldstones from?
- For simplicity, consider a 2 site model: $H o H_1 \ \& \ H_2$
- Symmetry structure of 2 site model:

- Two independent H_i + global symmetries \doteq 6 Goldstones
 - 3 KK-even: $\pi_{\mathsf{even}} \sim \pi_1 + \pi_2 \to \mathsf{get}$ eaten
 - 3 KK-odd: $\pi_{\text{odd}} \sim \pi_1 \pi_2 \rightarrow \text{remain in spectrum!}$

Mass of Pseudo-Goldstones

Global $[SU(1)_1 \times U(1)_1] \times [SU(2)_2 \times U(1)_2]$ is explicitly broken by

Having localized Higgs, not 2-site model (small correction)

$$\langle H \rangle \propto \cosh(m y) \quad \Rightarrow \quad m_0 \propto m e^{-mL/2}$$

- Gauging $SU(2)_V \times U(1)_V$
 - $o U(1)_A$ remains unbroken by this: $\pi^0_{
 m odd}$ does not get a mass.
- Introducing Yukawa couplings

$$\mathcal{L}_{Y} \sim \bar{\Psi}_{q} H_{1} \Psi_{u} + \bar{\Psi}_{q} H_{2} \Psi_{u} + (down)$$

Coleman-Weinberg potential

 \Rightarrow All the KK-odd Goldstones get mass from fermion (and gauge) loops.

Recap: Setup

UED with KK-parity

- Flat metric $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} dy^2$
- All SM fields in the bulk.
- KK-parity: $y \rightarrow -y$
- Fermion bulk mass: m(y) = -m(-y)
- Higgs boundary potentials

→ Fermions and Higgs localized at different points

Flavor in UED with KK-parity

• Now, we can proceed analogous to the RS case:

Normalized zero mode solutions

$$g_0, f_0 \sim f(c) \, \exp\left[-c\left(rac{|y|}{L} - rac{1}{2}
ight)
ight]$$
 with $c = \mu L$

with
$$f(c) = \sqrt{\frac{c}{e^c - 1}} = \frac{1}{\log R'/R} f_{RS}(c_{RS})$$

Yukawa couplings are given by

$$\mathcal{L}_{Y} \approx -\frac{v}{\sqrt{2}} \left[\bar{\Psi}_{q} \tilde{Y}_{u} \Psi_{u} + \bar{\Psi}_{q} \tilde{Y}_{d} \Psi_{d} + h.c. \right] \Big|_{y=\pm L/2}$$

• \tilde{Y}_u , \tilde{Y}_d are both $\mathcal{O}(1)$, anarchic flavor matrices.

Flavor in UED with KK-parity

⇒ Mass matrices are given by

Now usual SM prescription applies

$$m^{SM} = U_L m U_R^{\dagger}$$
 and $V_{CKM} = U_{Lu}^{\dagger} U_{Ld}$ $\Rightarrow \left(m_{u,d}^{SM} \right)_{ii} \sim rac{v}{\sqrt{2}} Y_* f_{q_i} f_{u_i,d_i}$

⇒ We got flavor hierarchy, but what about new FCNC contributions?

Flavor in UED with KK-parity: Check the hierarchy of f_i 's

ullet For left-handed fields: f_{q_i} 's are determined from the diagonalization matrices

$$|U_{ij}| \sim rac{f_i}{f_j} \qquad \Rightarrow \qquad |(V_{CKM})_{ij}| \sim rac{f_{q_i}}{f_{q_j}} \qquad i \leq j.$$

$$rac{f_{q_2}}{f_{q_3}}\sim \lambda^2, \quad rac{f_{q_1}}{f_{q_3}}\sim \lambda^3 \qquad ext{with } \lambda\sim \sin heta_c\sim 0.2$$

• Fermion masses hierarchy fixes right-handed f_{-u_i,d_i} 's

$$\begin{array}{lll} \frac{f_{u_1^c}}{f_{u_3^c}} & \sim \frac{m_u}{m_t} \frac{1}{\lambda^3}, & \frac{f_{u_2^c}}{f_{u_3^c}} & \sim \frac{m_c}{m_t} \frac{1}{\lambda^2} \\ \frac{f_{d_1^c}}{f_{u_3^c}} & \sim \frac{m_d}{m_t} \frac{1}{\lambda^3}, & \frac{f_{d_2^c}}{f_{u_3^c}} & \sim \frac{m_s}{m_t} \frac{1}{\lambda^2}, & \frac{f_{d_3^c}}{f_{u_3^c}} & \sim \frac{m_b}{m_t} \end{array}$$

Flavor in UED with KK-parity: FCNC

Plug in the wave function: In original basis = diagonal

$$g_{x} \approx g^{4D} \sqrt{2} \left[\underbrace{1}_{\text{universal}} - \underbrace{f_{x}^{2} \gamma(c_{x})}_{\text{non-universal}} \right]$$

• BUT, ere $\gamma \propto \frac{e^c}{c^3}$, but to obtain mass hierarchy we need $c \sim 1...15$.

Unlike RS: $\gamma \neq \mathcal{O}(1)$ \Rightarrow NO protection from FCNCs.

The origin of RS-GIM

- Why does this work in RS, but not in UED?
- In RS: Flavor violation comes from the coupling to KK-gluons

$$g_{x} = g^{5D} \int_{R}^{R'} dz \sqrt{-g} \left[\psi^{(0)}(z) \right]^{2} G^{(1)}(z) \approx g_{s*} \left[-\frac{1}{\log R'/R} + f_{x}^{2} \gamma(c_{x}) \right]$$
(In appropriate coordinates)

UV

IR

The origin of RS-GIM

- Why does this work in RS, but not in UED?
- In RS: Flavor violation comes from the coupling to KK-gluons

RS-GIM originates in well-separated wave functions

Why "UED-GIM" does not exist

 In UED the KK-gluon wave functions are not localized (at least not strongly enough):

Why "UED-GIM" does not exist

 In UED the KK-gluon wave functions are not localized (at least not strongly enough):

To work in UED need to localize fermions even more!

RS vs. UED with KK-parity

- We can justify brane localized terms at y = 0:
- \rightarrow Think of UED as integrated out RS

⇒ Effect of integrating out: Add "boundary" kinetic term

RS vs. UED with KK-parity

Add "boundary" kinetic term

$$S_{
m boundary} = \int d^5 x \; \delta(y) \left\{ rac{i}{2} ar{\Psi} \, \Gamma^{\mu} \overleftrightarrow{\partial}_{\mu} \Psi
ight\} \kappa {\it L} + \; {
m gauge \; kinetic \; term}$$

- Gauge kinetic terms turn out not to matter much.
- For fermions: only changes the function $f(c, \kappa) = \sqrt{\frac{c}{(1 + c\kappa)e^c 1}}$.
- ightarrow Can suppress $f\sim 1/\kappa$, while keeping $\gamma\sim rac{e^c}{c}\sim 1$.

However, this is basically the low energy version of RS and not UED!

Conclusion

- UED with KK-parity can localize fermions (but only in the middle).
- Localizing the Higgs on the boundaries gives Pseudo-Goldstones: Get masses at loop level (\rightarrow no problem ?)
- ⇒ Obtain flavor hierarchy, but no protection from FCNC.
 - Can work around this, but at cost of obtaining low-energy RS.

Anarchic flavor in UED is difficult.

The End

Thank you.